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This corrigendum corrects two misprints in the published 
paper. The results presented in the published paper are correct 
and are not affected by the misprints. The authors sincerely 
regret the mistakes. We thank Markus Held (University of 
Innsbruck) for pointing out the misprints in equation (2).

In the ion gyro-center pressure equation  (equation (2) in 
the original paper) two terms describing finite Larmor radius 
corrections to the ×E B-drift are missing. The terms include 
the drift velocity
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u

b
B

.2
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The correct form of the ion gyro-center equation reads
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Furthermore, on the left-hand side of equation (21) in the 
original paper Ni should be replaced by ⊥Pi . The correct form 
of equation (21) is
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1.  Introduction

The concept of potential vorticity (PV) dates back to Ertel’s 
theorem [1] which governs the time-evolution of PV. The the-
orem is an invaluable aid in understanding large scale fluid 
flows, particularly in planetary [2] and astrophysical fluid 
dynamics [3]. Analogues to Ertel’s theorem in plasma physics 
exist [4, 5], but they have not had the same impact as Ertel’s 
theorem. For ideal neutral fluids, PV is a Lagrangian invariant, 
i.e. it is conserved by each fluid element along its trajectory 
and hence puts strong constraints on the dynamic evolution of 
the fluid. Highly relevant for magnetically confined plasmas 
are the applications of Ertel’s theorem to systems with zonal 
flows in geophysical [2, 6–8] and astrophysical fluid dynamics 
[3]. By zonal flows we mean sheared banded flows. A promi-
nent example [3] is the banded cloud pattern and east-west 
directed jets in the atmosphere of Jupiter. Common for these 
systems with zonal flows is the appearance of mixing in com-
bination with non-constant PV profiles. In the context of PV 
dynamics, zonal flows are understood as a consequence of 
a stepwise homogenization of PV, forming a PV staircase. 

Each step forms a region of approximately constant PV and 
the zonal flows are strongest in the vicinity of the interfaces 
between these regions of constant PV.

Similar ideas have been explored in plasma physics, where 
in particular turbulent equipartion (TEP) theory has been used 
to explain the formation of non-collisional density and tem-
perature profiles and the associated pinch velocities [9–14]. 
In these theories Lagrangian invariants are mixed in regions 
bounded by closed streamlines. If the mixing is sufficiently 
strong, the existence of a small collisional diffusion homog-
enizes the Lagrangian invariants making them constant in the 
bounded regions. Turbulent equipartion theory has also been 
used to derive toroidal [15] and poloidal [16] momentum pro-
files and associated pinch velocities.

Here, we derive an equation analogues to Ertel’s theorem 
governing the time-evolution of the magnetic-field-aligned 
PV from a full-F, electrostatic, 2D slab, collisionless gyrofluid 
model. In the long wave-length limit the PV reads

ωΠ ≃ Ω + ∗

n
,i

i
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Abstract
An equation governing potential vorticity in a magnetized plasmas is derived. The equation is 
analogous to Ertel’s theorem. In the long wave-length limit the potential vorticity equals 
the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to 
the particle density. The equation is relevant for transport barriers in magnetically confined 
plasmas because particle density, ion temperature and the radial electric field are mutually 
coupled through the potential vorticity. The potential vorticity equation is derived from 
an energy conserving, four-field, electrostatic, full-F gyrofluid model. It is shown that 
the gyrofluid model possesses two exact Lagrangian invariants. In systems where mixing 
uniformly distribute the Lagrangian invariants we derive the corresponding turbulent 
equipartion states. It is shown that the system is driven towards constant potential vorticity. 
Given particle density and magnetic field profiles we infer ion temperature and electric 
potential profiles from the derived turbulent equipartion states.
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where ω* contains the magnetic-field-aligned E × B and dia-
magnetic vorticity, ni is the particle density and Ωi is the ion 
gyro-frequency. Further, we identify two Lagrangian invari-
ants of the model and derive two TEP states of the system. 
Interestingly, the first TEP state drives the system towards 
constant Π. Finally, we discuss the coupling between the 
radial electric field and the ion pressure prescribed by the 
TEP profile, in relation to zonal flows and transport barriers 
in magnetically confined plasmas and analogies to PV stair-
cases in geophysical and astrophysical fluid dynamics.

The remainder of the paper is organized as follows. In sec-
tion 2 we present the full-F gyrofluid model used in this paper. 
A PV equation  is presented in section  3. In section  4 TEP 
states and the associated profiles are presented. In section 5 
we discuss the results in relation to transport barrier physics. 
Finally, we sum up the results in section 6.

2.  Model

In this work we shall adopt a gyrofluid model [17] derived 
from full-F gyrokinetic [18] equations. Since we address the 
interplay between low-frequency turbulence and profiles, the 
full-F gyrofluid model is a good choice because it is global in 
the sense that no distinctions between fluctuations and back-
ground profiles are made. The model is fully non-linear and 
hence can describe micro-turbulence with gradient length-
scales comparable to the gyro-radius. Furthermore, for alge-
braic manipulation gyrofluid models have an advantage over 
other low-frequency fluid models [19, 20] because the gyro-
viscous cancellations [21, 22] appear naturally. In gyrofluid 
models the cancellation is carried out at the gyrokinetic level, 
which implies relatively simple gyrofluid model equations. 
The simplicity of gyrofluid models is striking because FLR-
corrected drift fluid models can be recovered from gyrofluid 
models [17, 23–25].

Here, we restrict our analysis to a simple, electrostatic 
plasma in a 2D slab perpendicular to the magnetic field. 
Collisions and dynamics parallel to the magnetic field are 
neglected. Ions are described by the gyro-center density Ni 
and the perpendicular gyro-center pressure Pi⊥, whose time-
evolutions are governed by

∂
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where the ion gyrofluid velocities are
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The perpendicular gyro-center temperature is defined as 
Ti⊥ = Pi⊥/Ni and B denotes the magnetic field strength. The 
generalized potential

ψ ϕ ϕ= Γ − | ∇ |⊥m

q B2
,

i
1

2

2� (4)

entering the E × B -drift uE includes the gyro-averaged electro-
static potential Γ1 ϕ and the E × B -energy which is important 
for momentum and energy conservation. The gyro-average 
operator ρΓ = + ∇ + ⋯⊥1 /21

2 2 , is the gyrofluid moment of the 
gyrokinetic gyro-averaging operator, where ρ = Ω⊥T m/( )i i i

2 2  
is the non-constant, thermal gyro-radius. uT is the gyrofluid 
representation of the ∇ B-drift and uη describes corrections 
to the gyro-averaged electric potential by the second gyro-

average operator Γ = ∂Γ
∂⊥

⊥
T

T
2

1  due to spatial variations of tem-

perature and magnetic field strength ∇η = ∇ln B − ∇ln Ti⊥.
As a consequence of the smallness of the electron to ion 

mass ratio, only the lowest order terms in the electron gyro-
center coordinate transformation are retained, which corre-
sponds to neglect of electron finite Larmor radius and finite 
electron inertia effects. Therefore, the electron gyrofluid 
moment variables are identical to the corresponding fluid 
moment variables e.g. Ne = ne. The electron equations are
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are the electron E × B -drift and ∇ B-drift, respectively and the 
perpendicular electron temperature is te⊥ = pe⊥/ne. In passing 
we note that the diamagnetic cancellations in equations  (1) 
and (2) appeared automatically. In order to emphasize the fun-
damental difference between particle and gyrofluid moments, 
all standard particle fluid moments are written in lower case 
letters (e.g. ni, ne, pi, pe, ti⊥, te⊥) whereas gyrofluid moments 
are written in upper case letters (e.g. Ni, Pi⊥, Ti⊥).

Electrons and ions are coupled through the quasi-neutrality 
constraint. By expressing the ion particle density ni in terms of 
gyrofluid moment variables we get

ϕ= = Γ + ∇ ⋅
Ω

∇†
⊥( )n n N

N

B
.e i i

i

i
1� (9)

The operator ρΓ = + ∇ + ⋯†
⊥1 /21
2 2  is the Hermitian conjugate 

operator to Γ1. Note that the Laplacian in Γ†
1 operates on ρ2. 

This equation is also referred to as the polarization equation 
due to the explicit appearance of the polarization density, the 
last term on the right hand side, which is the manifestation 
of the polarization drift in gyrokinetic models [18] or equiva-
lently the divergence of the polarization drift current [24–26] 
in drift fluid models.
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The total conserved energy for this system is

E ∫ ϕ= | ∇ | + +⊥
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where boundary terms were discarded.

3.  Potential vorticity equation

In neutral fluid dynamics Ertel’s theorem [1] is an indispens-
able aid, particularly in geophysical and planetary fluids, for 
comprehension of the character and physics of a wide range 
of phenomena. By combining the fluid vorticity and density 
equations we get an equation

ω λ λΠ = ⋅ ∇ + ∇ ⋅ ∇ × ∇ + ∇ ⋅ ∇ × F
t n

S
n p

n n n

d

d 3� (11)

describing the time evolution of PV: Π = ω · ∇λ/n. Here, n 
denotes the neutral fluid density, ω = ∇ × u is the vorticity 
associated with the velocity field u, d/dt = ∂/∂t + u · ∇ is the 
material derivative, F is the frictional force and λ is some 
scalar satisfying

λ =
t

S
d

d
,

where S is a source. Ertels theorem states that if: (i) λ is a 
conserved quantity, (ii) the fluid is either barotropic (i.e. the 
baroclinic vector vanishes: ∇ n × ∇ p = 0) or if λ is solely a 
function of n and p and (iii) the friction force F is negligible, 
then PV is a Lagrangian invariant, i.e. conserved in the frame 
moving with the velocity u.

For a system steadily rotating with angular velocity Ω the 
PV becomes Π = (2 Ω + ωr) · ∇λ/n, where ωr is the relative 
vorticity measured in the rotating frame of reference.

To demonstrate the power of the concept of PV, we consider 
an example from oceanography. Large-scale flows in the ocean 
are well described by shallow water models [2]. Furthermore, 
frictional forces are negligible and the fluid is nearly barotropic. 
Therefore, any conserved fluid scalar λ implies conservation of 
a corresponding potential vorticity. Since vertical mixing of the 
water column is negligible, the relative position of a fluid parcel 
λ = (z − hB)/H over the ocean bottom at hB in a fluid column of 
height H is a Lagrangian invariant which implies that

ω+ =
t

f

Hn

d

d
0r

is a Lagrangian invariant. f = 2Ω sin θ is the Coriolis param-
eter describing the component of the planetary vorticity 2Ω 
normal to the ocean surface at latitude θ(f  =  0 at equator). 
Since the density n can be considered constant PV conserva-
tion tightly couples the local vorticity of the water column 
ωr, the height H and the local component of the planetary 
vorticity f. Phenomena such as the spin-up of water columns 
when moving from shallow to deeper water and the path of 
the Gulf stream through the Atlantic Ocean can be explained 
by the concept of PV conservation in shallow water models.

Here we will show that the ion gyro-center density equa-
tion (1) provides an analogy to Ertel’s theorem. For low ion 
temperature a plasma fluid analogue is readily derived from 

the ion equations of motion showing that (Ωi + ω)/n is con-
served in the inviscid limit when the baroclinic contribution 
vanishes [4]. Our work considers the case of non-zero ion 
temperature. In order to obtain the gyrofluid PV equation we 
introduce the following drifts

=
^ × ∇
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The divergences of the corresponding fluxes equal the original 
terms in equation (1)
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Using these relations the gyro-center density equation (1) can 
be recast as
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where we have defined the material derivative and the modi-
fied temperature

ϕ= ∂
∂
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⊥u u u
t t

T T q
d
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respectively. To see that equation  (14) in fact describes the 
time-evolution of PV we express the ion gyro-center density 
Ni in terms of particle density ni, perpendicular pressure pi⊥ 
and the electrostatic potential ϕ by solving equation (9) for Ni. 
In the long wavelength limit (LWL) ρ ≪⊥k 14 4 , where k⊥ is the 
typical inverse perpendicular gradient length scale, we obtain 
the following expression for the gyro-center density

ω≃ −
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∗
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The last term in equation  (17) equals the component of the 

E  × B-drift vorticity ϕ^ ⋅ ∇ × = ∇ ⋅ ∇−
⊥b u B( )E

1  aligned 
with the magnetic field plus a cross-term ∇ln(ni/Ωi) · ∇⊥ 
ϕ/B. The first term in equation  (17) equals half the mag-
netic-field-aligned component of the diamagnetic vorticity 

^ ⋅ ∇ × = ∇ ⋅ ∇⊥b u p qn B1/2 1/2 ( /( ))D i i  plus a cross-term 1/2 
(qniB)−1∇⊥pi · [∇ln ni  +  3∇Ωi ]. Only half the diamagnetic 
vorticity appears which is a consequence of the underlying 
gyro-viscous cancellation which to lowest order annihilates 
the diamagnetic advection of momentum and thereby breaks 
the symmetry in the inertia term. Since ω*/Ωi is small:

ωΩ ≃ Ω + ∗

N n
i

i

i

i
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and hence equation (14) becomes

ωΩ + = ^ ⋅
∇ × ∇∗ ∗ ∗

⊥( ) b
t n

T

qB

d

d
ln

ln
.i

i

N

T
i

i� (19)

Plasma Phys. Control. Fusion 57 (2015) 054016



J Madsen et al

4

Identifying b̂ as ∇λ we note the strong resemblance of this 
equation to Ertel’s equation (11).

To sum up, the electrostatic, 2D slab geometry gyro-
fluid PV equation (14) implies that in regions where (i) vis-
cous forces, external forces and parallel dynamics can be 
neglected and (ii) when the right hand side—the modified 
baroclinic vector—vanishes, Ωi/N is a Lagrangian invariant. 
This PV theorem is important for, e.g. zonal flow generation 
because it links the electric field to the density and tempera-
ture profiles through equation (16). We will discuss this fur-
ther in section 5.

4.  Lagrangian invariants and turbulent  
equipartition profiles

We will now identify two quantities that are conserved along 
specific fluid trajectories. These Lagrangian invariants are 
derived by combining the gyrofluid PV equation  (14) with 
a recasted version of the perpendicular gyro-center pressure 
equation (2). First, we use the identities
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to write equation (2) as
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where the material derivative and the generalized tempera-
ture T* are defined in equation (15). The symmetry of equa-
tions (14) and (22) suggests [10] the Lagrangian invariants to 
be on the following form:
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where α is scalar. An equation for L is obtained by combining 
equations (14) and (22), which can be solved for α requiring 
that L is a Lagrangian invariant. Two solutions α = ± 2 are 
obtained corresponding to the exact Lagrangian invariants
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The electron fluid also possesses Lagrangian invariants which 
can be directly derived from the governing equations (1) and 
(2) or alternatively by evaluating equation (25) in the limit of 
small gyro-radius. Either way, the electron invariants are
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which are conserved along trajectories with velocities
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4.1. Turbulent equipartion profiles

Regardless of whether the flow is laminar or turbulent, 
L± and l± are Lagrangian invariants. In either case, if in a 
bounded region the mixing time-scale is faster than other 
competing time-scales (e.g. collisional diffusion time-scale), 
the Lagrangian invariants will be uniformly distributed, a 
state denoted turbulent equipartition (TEP) [9, 27]. A simple 
example is the equipartition of n/B in simplified 2D drift-fluid 
turbulence [12, 28], which implies that the particle density 
profile is given by the magnetic field n ∼ B and that n is trans-
ported up-gradient by the so-called curvature pinch velocity 
[27].

Here, we are concerned with mixing of the Lagrangian 
invariants L+ and L− given in equation  (24). An equipartion 
of L+ and L− due to turbulent mixing implies that profiles are 
driven towards

= =⊥N

B

T

B
const., const.i i

� (29)

Interestingly, the Ni ∝ B TEP profile drives the system towards 
constant PV, whose time-evolution is given in equation (14). 
To further investigate the TEP state, it is instructive to express 
the PV and therefore the ion gyro-center density in terms of 
measurable quantities. Since we are concerned with profiles 
inferred from the TEP state, we take the ion gyro-center den-
sity in the LWL as in equation (18) which allows us to express 
the Ni ∝ B TEP profile as

ωΩ + ≃ =
∗

n
cconst. ,i

i
1� (30)

where ω* is defined in equation (17). In order to express the 
TEP Ti⊥ ∝ B profile in terms of measurable quantities, a rela-
tion similar to the quasi-neutrality constraint equation (9) for 
the perpendicular ion particle pressure pi⊥ is needed. Using 
the same procedures [17] which led to equation (9) we obtain 
the following LWL approximation for the perpendicular ion 
gyro-center pressure
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ϕ= − = ∇
Ω

+ ∇ ⋅
Ω

∇⊥ ⊥
∗ ∗

⊥
⊥ ⊥ ⊥

⊥( ) ( )P p p p
t p

m

p

B
, 2 ,i i i i

i i

i i

i

i

2
2� (31)

and hence that the profiles in the LWL are driven towards

−
Ω

≃ =⊥
∗c p p

B
c

( )
const. ,i i1

2� (32)

where equation (30) was inserted.
Equations (30) and (32) form a coupled set of ordinary 

differential equations. For example if the particle density n 
and the magnetic field strength B are specified, the electric 
potential ϕ and the perpendicular ion temperature ti⊥ can be 
determined given appropriate boundary conditions and values 
of the constants c1 and c2. The TEP states therefore couple 
the particle density, the ion temperature, the magnetic field 
and the electric field profiles. To illustrate this point we con-
sider the special case where Ω/n = C is constant. In that situ-
ation ω*/Ω is also constant and hence equations (30) and (32) 
reduce to the coupled equations

=
Ω

− Ω −⊥( )x
E

x

t

m
C c C

d

d

d

d 2
( ),i

i i
i

2

2 1� (33)

= − Ω +
Ω

⊥ ⊥ ⊥( ) ( )x

Et

B

c

Cc

t

x

t

m

d

d 2 2

1

2

d

d
,i i i i

i i

2

1

2

2� (34)

where ϕ= −E
x

d

d
 denotes the electric field and x is the ‘radial’ 

slab coordinate anti-parallel to the magnetic field gradient. In 
this special case the coupling of the electric field and the ion 
temperature is evident. We will discuss this coupling further 
in the next section.

Lastly, a uniform distribution of the electron fluid 
Lagrangian invariants l+ and l− due to turbulent mixing implies 
that the electron profiles are driven towards

= =⊥n

B

t

B
const., const.,e e

� (35)

as was also found in [27]. The result obtained here can easily 
be derived for isotropic electron temperature te⊥ = te∣.

We would like to emphasize that profiles predicted by TEP 
theory must be used with care because ions and electrons are 
coupled. Especially, if the ion TEP states are used to infer the 
electric field profile without considering the electrons, as is 
possible using equations (30) and (32). However, it is easily 
imaginable that ion and electron TEP states are not simultane-
ously reached, e.g. if their particle, momentum and heat sinks 
and sources are different. Given that the ion and electron pro-
files are simultaneously driven towards their corresponding 
TEP states, the ion profiles in equation (29) reduce to

= +
Ω

=⊥
⊥( )

B x

E

B

t

B B
E

x
t

1 d

d
const.,

2 d

d
const.i

i
i2� (36)

respectively. In this state the shearing rate of the radial electric 
field follows the magnetic field with a variation constrained by 
the ion temperature profile.

5.  Discussion

In a magnetically confined fusion plasma we cannot expect PV 
nor the Lagrangian invariants in equations (29) and (35) to be 
globally mixed and hence uniformly distributed over the entire 
plasma from the core to the wall. Due to the presence of spa-
tially localized sinks and sources, the PV profile is expected 
to be non-constant. Nonetheless, we speculate that the plasma 
can be organized such that the Lagrangian invariants are con-
stant in bounded regions. A stepwise homogenization has been 
observed in geophysical [6, 7] and astrophysical [3] systems, 
where strong zonal flows near the interfaces between the 
regions of constant PV have been observed. We hypothesize 
that similar mechanisms involving homogenization of PV 
could be relevant for explaining the large scale flows associ-
ated with transport barriers in magnetically confined plasmas.

In order to illustrate this hypothesis, we have inferred the 
ion temperature and the electric field profiles by solving the 
coupled boundary value problems in equations (30) and (32) 
for given profiles of the particle density ni(x), the magnetic 
field B(x) and the TEP constants c1(x) and c2(x). We show two 
examples to illustrate how the constants c1 and c2 influence 
the solutions. In both examples the particle density profile is 
a monotonically decreasing function with a localized steep 
gradient pedestal region. The boundary value problems were 
solved numerically using the bvp4c Matlab routine [29]. All 
quantities are Bohm normalized:

ρ τ τ ϕ ϕ→ Ω → → →

→
⊥ ⊥x x e t t t t

n n n

/ , , / , / ,

/

i i i i i i

i i i

0 0 0 0

0

� (37)

where ti0 = ti⊥(x = 0), Ωi0 is the ion gyro-frequency at x = 0 
and ρ = Ω− t m/i i i i0 0

1
0 . In both examples the equations  were 

solved on a domain 0 ⩽ x ⩽ 100 and we applied the boundary 
conditions

ϕ ϕ= = = =⊥ ⊥t
x

t(0) 1,
d

d
(100) 0, (0) (100) 0.i i� (38)

5.1.  Example 1: stepwise homogenization

As shown in figure 1 the particle density is proportional to the 
magnetic field except near x = 50, where the value of the particle 
density strongly decreases. c1 and c2 are chosen such that they 
follow the background value of the N ∝ B TEP state defined in 
equation (30) where ω* ≃ 0. Since ni is proportional to B away 
from x = 50 we get that c1(x) = c2(x) = ni(x)/B(x). As shown in 
figure 1(a), c1 and c2 are therefore stepwise constant. The solu-
tions ti⊥ and ϕ are shown in figures 1(a) and (b), respectively. 
Outside the steep gradient region the ion temperature coincides 
with the particle density profile and is therefore proportional 
to the magnetic field. Also, the electric field goes towards zero 
outside the steep region. Since ni ∝ B in these regions it is not 
surprising that ti and ϕ are solutions to equations (33)–(34). Near 
x = 50 we observe that the ion temperature strongly decreases 
as has a negative slope comparable to the particle density gra-
dient but slightly less steep. The electric field is negative and is 
strongly sheared forming a well centered around x ≃ 50.
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5.2.  Example 2: TEP state with particle density pedestal

Another possible scenario is that profiles are driven towards 
the TEP states given in equations (30) and (32) across a par-
ticle density pedestal region. In this case the TEP state con-
stants are fixed to the mean value of n/B: c1 = c2 = 0.98. The 
solutions ti⊥ and ϕ to the coupled boundary value problems 
given in equations (30) and (32) are shown in figures 2(a) 
and (b), respectively. The ion temperature profile decreases 
in the vicinity of the particle density pedestal region, but the 
ion temperature profile is less steep than the particle den-
sity profile. In the region to the left of the particle density 
pedestal region the electric field is approximately a linearly 
decreasing function and hence with a constant shearing rate. 
When approaching the pedestal region the electric field 
rapidly increases and forms a well with a strong shear. We 
note that these features in ion temperature and electric field 
profiles are qualitatively in agreement with experimental 
observations of sheared flows associated with transport 
barriers [30].

Another possible scenario is the combined ion and elec-
tron TEP state given in equation (36). In this state the E × 
B-shearing rate is constant. Regions with constant shearing 
rates on each side of a transport barrier were observed in 
the H-1 device [31]. In future work we will compare our 
findings with numerical simulations and experimental 
measurements.

6.  Summary

We have derived a non-zero ion temperature potential vor-
ticity equation analogous to Ertel’s theorem for a plasma in a 
2D slab. The potential vorticity equation (14) is derived from 
an electrostatic, inviscid, full-F gyrofluid turbulence model, 
which is fully non-linear and makes no distinction between 
fluctuations and profiles. We show that when evaluated in the 
long wave-length limit the potential vorticity equals the ratio 
of the ion gyro-frequency plus the E  × B  and diamagnetic 
polarization densities to the particle density. We show that the 
gyrofluid model possesses two Lagrangian invariants which 
are used to derive two turbulent equipartition states given in 
equation  (29). In the turbulent equipartion state profiles are 
driven towards constant potential vorticity. The turbulent 
equipartition states are evaluated in the long wave-length limit 
revealing that the turbulent equipartion states couple particle 
density, temperature and the electric field. We hypothesize that 
the results are important for zonal flows and the associated 
transport barriers in magnetically confined plasmas, drawing 
analogies to potential vorticity staircases in geophysical and 
astrophysical fluid dynamics. To support this hypothesis we 
infer the ion temperature and electric potential profiles from 
the turbulent equipartion states given profiles of the particle 
density and the magnetic field. The inferred electric field, 
shown in figures 1 and 2, is strongly sheared and forms a well 

Figure 1.  Input profiles of (a) particle density n, magnetic field strength B, TEP states c1 and c2 and n/B. Vertical grey lines indicate the 
domain plotted in (b). Numerical solutions to the coupled boundary value problems given in equations (30) and (32) for (a) ti⊥ and (b) the 
electric potential ϕ, also showing the electric field E and the shearing rate dE/dx.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

x

(a)

n
B

ti⊥
c1,c2,n/B

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 40  45  50  55  60

x

(b)φ
E

dE/dx

Figure 2.  Input profiles of (a) particle density n, magnetic field strength B and TEP states c1 and c2. Numerical solutions to the coupled 
boundary value problems given in equations (30) and (32) for (a) ti⊥ and (b) the electric potential ϕ, also showing the electric field E and 
the shearing rate dE/dx.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  20  40  60  80  100

x

(a)

n
B

ti⊥
c1,c2

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100

x

(b)0.02 φ
E

10 dE/dx

Plasma Phys. Control. Fusion 57 (2015) 054016



J Madsen et al

7

in regions where the particle density profiles has steep gradi-
ents and hence qualitatively share features with the observed 
electric field associated with transport barrier in magnetically 
confined plasmas.
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